
JSLHU

JOURNAL OF SCIENCE
OF LAC HONG UNIVERSITY

ISSN: 2525 - 2186

Tạp chí Khoa học Lạc Hồng, 2025, 20, 06-12

6 JSLHU, Issue 20, March 2025

PHÁT HIỆN MÃ ĐỘC TRONG FILE PE SỬ DỤNG HỌC SÂU

VỚI KỸ THUẬT HỌC TỰ GIÁM SÁT

Võ Khương Lĩnh1*, Nguyễn Hòa Nhật Quang2
1Trường Đại học Nguyễn Huệ, phường Tam Phước, thành phố Biên Hòa, tỉnh Đồng Nai, Việt Nam

2Trường Đại học Trần Đại Nghĩa, số 189, đường Nguyễn Oanh, phường 10, quận Gò Vấp, TP. Hồ Chí Minh, Việt Nam

* Tác giả liên hệ: vokhuonglinh@gmail.com

THÔNG TIN BÀI BÁO TÓM TẮT

Trong những năm gần đây, đã có sự gia tăng đột biến về phần mềm độc hại mới do

tin tặc tạo ra trên toàn cầu, đặt ra thách thức cho các phương pháp phát hiện truyền

thống. Bài báo này khám phá việc sử dụng trí tuệ nhân tạo tiên tiến, cụ thể là Học

sâu với Học tự giám sát, để xác định phần mềm độc hại trong các tệp thực thi.

Nghiên cứu của chúng tôi tập trung vào việc so sánh hiệu quả của các kỹ thuật học

sâu phổ biến như mô hình CNN và mô hình CNN tinh chỉnh, với các mô hình

Autoencoder. Đóng góp chính của bài báo này nằm ở việc so sánh kết quả của các

phương pháp tiếp cận khác nhau này để phát hiện phần mềm độc hại.

Ngày nhận: 20/01/2025

Ngày hoàn thiện: 24/2/2025

Ngày chấp nhận: 7/3/2025

Ngày đăng: 15/3/2025

TỪ KHÓA

Biểu diễn mã độc;

Phát hiện mã độc;

Học sâu;

Mạng nơ-ron tích chập;

Học tự giám sát.

MALWARE DETECTION IN PE FILES USING DEEP LEARNING WITH

SELF-SUPERVISED LEARNING TECHNIQUES

Vo Khuong Linh1*, Nguyen Hoa Nhat Quang2
1Nguyen Hue University, Tam Phuoc Ward, Bien Hoa City, Dong Nai Province, Vietnam

2Tran Dai Nghia University, No. 189, Nguyen Oanh Street, Ward 10, Go Vap District, Ho Chi Minh City, Vietnam

*Corresponding Author: vokhuonglinh@gmail.com

ARTICLE INFO ABSTRACT

Received: Jan 20th, 2025 In recent years, there has been a surge in new malware created by hackers globally,

posing challenges for traditional detection methods. This paper explores using

advanced artificial intelligence, specifically Deep Learning with Self-supervised

learning, to identify malware in executable files. Our study focuses on comparing

the effectiveness of popular deep learning techniques like CNN models and fine-

tuned CNN models, against Autoencoder models. The key contribution of this paper

lies in comparing the results of these different approaches to malware detection.

Revised: Feb 24th, 2025

Accepted: Mar 7th, 2025

Published: Mar 15th, 2025

KEYWORDS

Malware representation;

Malware detection;

Deep learning;

Convolutional neural network;

Self-supervised learning.

Doi: https://doi.org/10.61591/jslhu.20.608
Available online at: https://js.lhu.edu.vn/index.php/lachong

Vo Khuong Linh, Nguyen Hoa Nhat Quang

7

JSLHU, Issue 20, March 2025

1. INTRODUCTION

In recent times, with the development of artificial

intelligence, the explosion in the number of malware

strains, as well as their variations, is one of the challenges

that cause certain difficulties for traditional malware

detection methods in the field of Information Security.

Therefore, automatic malware detection is essential.

Malware detection based on deep learning is one of the

methods that brings positive results and is suitable for

current requirements.

Today, deep learning has been applied in many fields,

especially with good results in image recognition. Due to

the many hidden layers between the input and output

layers, deep learning models can extract features and

classify data into defined classes. When a file is

represented as an image, a trained deep learning model

can determine or predict whether it is malware.

Portable executable files (PEs) have an important role

in information security as they are typically containers for

malware and execute malicious behaviors. This type of

file contains executing machine codes used to start

programs and applications on the computer. It is an

important part of the system and one of the main sources

of malware deployment.

There are many approaches to using Deep Learning to

detect malicious code, such as using Recurrent networks

[14], Neural Networks [6, 11, 24], and Convolutional

Neural Networks [2, 4, 11, 16, 17]. According to research,

this paper has found that the use of Convolutional Neural

Networks to detect malicious code (with their image

representation) yields the good results. Furthermore, some

studies promote solving the problem of detecting malware

in their image representation using unsupervised learning

models. [7, 18, 25, 26]

Within the scope of the article, this research focuses on

self-supervised learning model for malware images

detection problem. This paper compares and evaluates the

experiment’s result with other learning methods, using

models that have been studied.

2. RELATED WORK

2.1 Convolutional Neural Network

There are many Deep Learning techniques for solving

the malware detection problem. However, the studies [12,

15, 17] proved that the Convolutional Neural Network

yields the best results.

A Convolutional neural network (CNN) is a deep

learning architecture designed to process and analyse

visual data, such as images and videos by automatically

learning features between pixels [6]. The main

components of CNN include convolutional layers, pooling

layers, fully connected (dense) layers, activation

functions, and an overfitting reduction method through

dropout [13]. In particular, convolutional layers help

detect and extract features and characteristics of images

(edges, textures, patterns…), while pooling layers play the

role of reducing the complexity of the computing process

[4].

The approach using deep learning in malware detection

has yielded many good results due to several

advantageous features that CNNs offer:

- Feature Extraction and Learning: CNNs are adept at

automatically learning hierarchical representations of data

and relevant features from raw data, eliminating the need

for manual feature engineering.

- Spatial Hierarchical Learning: CNNs can learn spatial

hierarchies of features within the data, which is useful for

detecting complex patterns in the structure and content of

malware.

- Scalability: CNNs can be scaled to handle large

datasets, which is critical in the context of malware

detection due to the vast number of malware samples that

need to be processed.

By leveraging these capabilities, researchers can

develop robust and effective malware detection systems

capable of identifying both known and unknown malware

variants. The models proposed in [19] and [5] have

structures and parameters shown in Table 1 and Table 2,

respectively. Through experiments, this research found

that in the model [19], executing one step requires 100ms,

while model [5] requires approximately 900ms in each

epoch.

Most studies, such as [5, 9, 19], use networks with a

structure of three interleaved convolutional layers and

three pooling layers. Within the scope of this study, the

paper will also apply and compare the two models of [5]

and [19] on two datasets: EMBER dataset and a self-built

dataset to obtain an overall objective view.

2.2 Image Representation of Malware

Representing malware as images is a technique used in

some cases, especially when leveraging CNNs for

malware detection.

To implement CNNs in malware detection, it is

necessary to represent malware as images. According to

the proposal by L. Nataraj and colleagues [9], both benign

and malware files are considered binary strings composed

of 0s and 1s. Then, those strings can be read as a byte

sequence (8 bits) arranged in a two-dimensional array and

represented as a grayscale image where each pixel has a

value ranging from 0 to 255. Variants of the same

malware strain exhibit similar image representations

regarding pixel pattern features, while different malware

strains will have distinct images, differing from benign

files (Figure 1).

The challenge is to determine the optimal image

representation method to preserve or enhance the

distinctive characteristics of the image. Through

observation, there are two main factors that lead to the

loss of feature information: pixel arrangement order and

the process of determining the size of the original image.

Malware detection in PE files using deep learning with self-supervised learning techniques

8 JSLHU, Issue 20, March 2025

Figure 1. Grayscale Image Representation of Benigh (left) and

Malware (Right).

In most research articles on using CNNs in the problem

of detecting malicious code, they often use the method of

arranging pixels in a regular order. For example, L.

Nataraj [9] and Minh Tu et al. [19] used the this method.

The regular order for pixel arrangement is the allocation

of pixels from left to right and top to bottom of the image.

They established the thresholds depending on the byte

sequence length to determine the width size of the image.

The width size will be from 32, 64, 128, 256, 354, 512 and

1024. Then, the height will be determined by dividing the

sequence length by the width. Most of the time, the output

images are usually rectangular in shape (the height is

usually longer than the width). The images were then

resized to 64x64 dimensions.

In other studies for grayscale images, Quach Danh

Ngoc [5] and Ren Z. [15] proposed new approaches that

mitigate one limitation of [9, 19]. They used different

methods of pixel arrangement such as Gray, Zigzag, H-

curve, Hilbert curve, Z-order, and Sweep curve. Only

Hilbert and Zigzag methods keep the distance between

any two consecutive points on the byte string placed next

to each other in 2-D space. after the transformation into an

image.

This is general malware analysis and detection.

Particularly with PE files, the characteristic information

that helps distinguish malware from benign is mostly

concentrated in the header, which is the beginning part of

the file’s byte sequence. Thus, Moreina et al. [12] and [10]

used a diagonal zigzag patterns to detect ransomware

while transforming PE header data into images.

Therefore, with the zigzag order of pixel arrangement

method, the header information of the PE file will be

extended horizontally within some top rows of the image.

And the Hilbert curve method has difficulty converting to

custom sized images. Furthermore, with the rectangle size

determining process, the operation of resizing the image to

64x64 (square) size will increase the risk of information

distortion.

Figure 2. Image representation patterns regular (a), zigzag (b),

z-order (c), hilbert-curve (d) and serpentine (e).

Through studying the above research, this study chose

the zigzag pixel arrangement method based on the image’s

diagonal called “serpentine” order for experiments. This

method gave good results, in particular, diagonal zigzag

patterns are suitable for PE files as well as preserving the

continuity between pixels.

2.3 Self-supervised learning technique

There is a study [17] using self-supervised learning for

malware detection with a natural language processing

approach, which gave better results than supervised

learning. On the other hand, there are research [3, 7] using

Self-Supervised Learning for anomaly detection which

also gave better results than supervised learning

technique. Therefore, this paper proposes an approach of

using Self-Supervised Learning technique to serve

malware detection problem.

In AI field, Self-Supervised Learning (SSL) is a

paradigm where a model is trained on a task and, instead

of depending on external labels provided by humans, uses

the data itself to generate supervisory signals. Self-

supervised learning in neural networks seeks to generate

meaningful training signals by taking advantage of innate

structures or relationships in the input data. The way SSL

tasks are made, completing them necessitates identifying

key characteristics or connections in the data. Usually, the

input data is enhanced or changed in a way that produces

related sample pairs. The supervisory signal is created

using one sample as the input and the other as the output.

Noise addition, cropping, rotation, and other adjustments

are examples of this augmentation. Self-supervised

learning more closely resembles how humans classify

objects in the real world.

An artificial neural network or another model, like a

decision list, is the foundation of the conventional SSL

technique. There are two steps in the learning process for

the model. Initially, the task is completed by applying

pseudo-labels to help initialize the model parameters,

based on an auxiliary or pretext classification task.

Second, either supervised or unsupervised learning is used

to complete the task at hand. Completing patterns from

masked input patterns is the focus of other auxiliary tasks.

In computer vision and natural language processing

(NLP), where the quantity of labeled data needed to train

models can be unreasonably large, self-supervised

Vo Khuong Linh, Nguyen Hoa Nhat Quang

9

JSLHU, Issue 20, March 2025

learning is especially helpful. Self-supervised model

training is more economical and time-efficient because it

requires fewer annotations and labels on the data.

 Therefore, in the scope of this study, with the SSL

idea, the image representation of malware and benign files

will be augmented to leverage inherent structures and

relationships within the input data to create meaningful

training signals.

3. PROPASAL FOR PE FORMAT MALWARE

DETECTION USING AUTOENCODER

As mentioned in the previous section, this study

proposes an approach to use Self-Supervised Learning

models for malware detecting with image representation.

First, the input files will be converted into grayscale

images with serpentine pixel arrangement methods. After

that, those original images will be augmented

transforming (flipping, rotating, jigsaw puzzling). Then,

the augmented images are going into an Autoencoder to

be reconstructed into original image. Thus, this process

helps getting the core patterns aka the most distinctive

features to classify if they are malware or benign.

Autoencoder belongs to unsupervised deep learning

network group. It gains knowledge of effective data

representation or encoding. Since it is a directed neural

network that is less dependent on training data and is

capable of producing its own labeled data, it is

unsupervised deep learning - more precisely, self-

supervised deep learning. The purpose of Autoencoder is

to try to reproduce the input data as closely as possible.

Autoencoder is often used in data dimensionality

reduction problems, image noise removal or anomaly

detection. So, this article focuses on the problem of

malware detection.

An Autoencoder network can be divided into three

main components: encoder f(x), code (also known as

“bottleneck”) h and decoder g(h). The bottleneck or code

layer is the representative layer, usually the smallest size

in the network, the main function of this layer is to store

the most important information from the input data.

Meanwhile, the encoder layer tries to put the input data

into the code layer, and the decoder layer tries to recreate

the output data from the code layer. If we consider x as the

input data and r as the data reproduced from the decoder

layer, we can understand: h = f(x) and r = g(h).

Autoencoder is essentially a neural network, so it can be

trained through back-propagation with an error function.

Figure 3. Basic structure of Autoencoder.

The encoder consists of a series of convolutional

blocks, pooling modules, and a bottleneck, which is a

compact area where the model's input is compressed. The

decoder, which consists of several upsampling modules to

reconstruct the compressed feature as an image, comes

after the bottleneck. When using a basic autoencoder, the

desired result should be the same as the input data but

with less noise. On the other hand, variational

autoencoders create an entirely new image using the input

data that the model has been given.

The bottleneck is the smallest and most crucial

component of the neural network. The purpose of the

bottleneck is to limit the amount of data that can pass from

the encoder to the decoder, allowing only the most

essential information to do so. We can say that the

bottleneck aids in the formation of a knowledge-

representation of the input since it is constructed in a way

that captures the maximum amount of information

contained in an image. As a result, the encoder-decoder

structure aids in obtaining the maximum amount of data

from an image and creates valuable associations between

different network inputs. The neural network is further

prevented from memorizing the input and overfitting on

the data by a bottleneck acting as a compressed

representation of the input. The smaller the bottleneck, the

lower the risk of overfitting, but very small bottlenecks

would limit the amount of data that could be stored, which

raises the possibility that crucial data could escape the

encoder's pooling layers.

Eventually, the output of the bottleneck is reconstructed

by a series of convolutional and upsampling blocks that

make up the decoder. The decoder functions as a

"decompressor," reconstructing the image from its latent

attributes, since the input is a compressed knowledge

representation.

Figure 4. Deep Autoencoder structure: Encoder, Bottleneck

(code), Decoder.

To reproduce the input data as closely as possible to the

training data is the aim of the autoencoder. With this

knowledge, we can provide Autoencoder with only data of

the benign class - not malicious code - for it to learn.

Next, we determine the reconstruction error for both

malware and benign components of the dataset.

Reconstruction error indicates whether the Autoencoder's

reconstruction of the benign set is accurate or not. A

smaller reconstruction error indicates a higher

reconstruction error. This indicates that the input data is

malicious software rather than benign data. The

reconstruction error now resembles a histogram; all we

need to do is determine a threshold to distinguish between

the malicious and benign error sets. This turns the issue

into a binary classification issue.

Malware detection in PE files using deep learning with self-supervised learning techniques

10 JSLHU, Issue 20, March 2025

4. EXPERIMENTS AND EVALUATION

4.1 Dataset Description

This study uses 2 datasets, one is EMBER [8] (with

data from 2017), and the other is self-built called LQDU-

23 (with data from 2023). The EMBER dataset contains

total 1,100,000 samples with the distribution shown in

figure 5 below:

Figure 5. Distribution of samples in EMBER dataset.

The EMBER dataset [8], collected in 2017, has many

types and has been balanced in terms of the number of

files of each type. Types of malicious code in EMBER

include: adware, backdoor, mining, flooder, packed,

ransomware, riskware, rootkit, spyware, common trojan,

virus, worm, etc. Ensure the number of files for each is

about 40,000 files.

On the other hand, this study builds a dataset called

LQDU-23, and benign files are collected, all of which are

files with the PE format or with PE file extensions

belonging to the PE group. Malware files are collected

from the VirusShare [20] channel, which came from the

VirusShare_00468.zip set, with a total size of 52.63 GB

and containing 27533 malware files in PE format. They

were uploaded on April 30, 2023. These samples are then

uploaded to VirusTotal [21] to scan and retrieve the

results to classify malware, as well as serve as a basis for

separating the training and testing sets. After that, training

and test sets are built with 2000 samples of benign and

2000 samples of malware in each set.

In the LQDU-23 dataset, the number of strains

collected is not much, with most focusing on trojan strains

(including droppers, downloaders, ransomware, and

proxies); a few are viruses and worms; this is also

reflected in the report. Actual reports in CIS [23]:

Table 1. Distribution of malware families in LQDU-23

Type Quantity

Trojan 16193

Virus 1177

Worm 343

Others 273

Our approach is to experimentally apply the methods to

a multi-species, symmetric, balanced (EMBER) data set

and then use the same training results to test on another

dataset , which is unbalanced in terms of type (LQDU-23)

to test the performance quality of the methods against

each other: specifically, the ability to extract features

hidden within the structure of the malicious code.

Especially in real-life situations, the type of malware used

tends to change depending on the characteristics of the

technological situation, the security capabilities of

software developersand the level of security awareness of

users’ networks.

Since this paper uses 4 different methods to transform

the original images to become the input for Autoencoder,

the data size will be increased by 4 times. Thus, in the

scope of this study, 2000 samples were randomly chosen

from each subset with a fixed seed parameter.

After obtaining the dataset for training and testing, this

study proceeds to convert them into grayscale images

according to the method of L. Nataraj et al. [9]: consider

the data bytes as a pixel, arrange them into photos in order

from top to bottom, left to right. Then resize the image to

64x64 to fit the input of a neural network.

From here, create two copies of the above image

dataset. A set will be labeled as malicious or benign. This

dataset is ready for two methods. CNN [18] and fine-

tuned CNN [5]. The remaining unlabeled copy of the

dataset will be augmented into 4 versions: rotated 90

degrees, rotated 270 degrees, flipped horizontally, and

flipped vertically, as shown in Figure 6:

Figure 6. Augmented Images: (a) original, (b) rotate 90 degree,

(c) rotate 270 degree, (d) flip-horizontal, (e) flip-vertical

4.2 Experimental results & evaluation

The experiment program is built in Python 3 language

with the Keras library, running on a computer with the

following configuration:

- Intel Core i7-6700HQ CPU @2.60GHz,

- RAM: 12GB RAM,

- NVIDIA GeForce GTX 960M graphics card.

The experiment uses 3 learning models: two CNNs

from [5, 19] and SSL with Autoencoder to train with

EMBER dataset. After that, the trained models are tested

on both the EMBER and LQDU-23 datasets.

Due to the equal number of malware and benign in the

training dataset, the “accuracy” measurement is used. In

Vo Khuong Linh, Nguyen Hoa Nhat Quang

11

JSLHU, Issue 20, March 2025

addition, this study also uses “recall” and “f-score”

measurements.

For the CNN method, training and generating results

follow the model outlined in [5, 19]. Particularly with the

Autoencoder method, this study uses the trained encoder

from the autoencoder to compress input data and train a

different predictive model. After that, a logistic regression

model is processed to train on the training dataset directly

and evaluate the performance of the model on the holdout

test set, as shown in Figure 7.

Figure 7. Using Autoencoder for classification

The experimental results, with the EMBER dataset, the

difference of all three models is not too different, while

with the LQDU-23 dataset, Autoencoder method still

maintains high accuracy while the other two models

decrease sharply as shown in Table 2.

Table 2. Experiment Results

Dataset

Approach

EMBER LQDU-23

Acc Recall F1 Acc Recall F1

CNN [19] 92.06 92.06 93.94 83.03 83.03 90.73

CNN [5] 96.33 96.33 97.95 92.22 92.22 95.95

Autoencoder 96.31 96.31 97.57 94.73 94.73 97.09

This shows that with Autoencoder, underlying features

are extracted and are more effective in detecting different

variations of malicious code. From there, it can be used to

detect malicious code in new data sets, shorten update

times, and retrain the classifier. According to experimental

results, this method shows high development potential,

meeting the requirements in today's malware situation.

The results of our study suggest that when it comes to

spotting different types of malware, not all methods are

equal. This study trained three models - CNN, fine-tuned

CNN, and Autoencoder using the EMBER dataset, which

is a solid collection of malware from 2017. As above, all

three models did pretty well on this dataset.

However, when this research tested these models on the

LQDU-23 dataset, which has newer malware up until

2023, the Autoencoder model stood out. It kept its high

accuracy, unlike the CNN and fine-tuned CNN models,

which struggled more with the new kinds of malware.

This tells us that the Autoencoder method is good at

picking up on the hidden, underlying features of malware.

It's better at recognizing new types of malicious code.

This could mean faster updates for security systems and

easier retraining of detection tools.

5. CONCLUSION

In summary, the primary contribution of this paper is

the comparison of three distinct Deep Learning methods:

CNN, fine-tuned CNN, and Autoencoder for malware

detection in executable files. This article tested these

techniques on LQDU-23, a more recent dataset, as well as

EMBER, a reliable dataset with older malware. Our

experiment shows that the Autoencoder model was the

most effective at identifying novel and evolving malware

types. Even with the most recent threats from up to 2023,

it remained accurate. This implies that the Autoencoder

technique is potential for enhancing the training process of

detection tools and shorten security system updates time

and resources. The Autoencoder’s adaptability is primarily

due to its capacity to extract underlying patterns from

malware images. The self-supervised learning model can

offer a promising approach to detect and classify malware

generated by AI. This work adds knowledge to the

discussion of self-supervised learning applications in

practical problem solving, especially malware detection.

6. REFERENCES

[1] Anh Tran Ngoc, Linh Vo Khuong. Malware detection based

on Machine Learning and PE header information. Information

Security Journal 2021. Vietnam.

[2] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton.

ImageNet Classification with Deep Convolutional Neural

Networks. International Conference on Neural Information

Processing Systems (NIPS) 2012.

[3] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, Tomas Pfister.

CutPaste: Self-Supervised Learning for Anomaly Detection and

Localization, Computer Vision Foundation 2021.

[4] Gibert D. Convolutional neural networks for malware

classification. University Rovira i Virgili, Tarragona, Spain,

2016.

[5] Hung Nguyen Viet, Ngoc Quach Danh, Dung Pham Ngoc.

Research on techniques of representing malware files and deep

learning models in malware detection, XXII National

Conference: Some selected issues of Information and

Communication Technology 2019. Thai Binh, Vietnam.

[6] Kephart J.O. Tesauro, G.J., Gregory B Sorkin. Neural

networks for computer virus recognition. IEEE International

Conference on Intelligence and Security Informatics 1996.

[7] Hadi Hojjati, Thi Kieu Khanh Ho, Naregs Armanfard, Self-

Supervised Anomaly Detection: A Survey and Outlook 2023.

Montreal, QC, Canada,

[8] Hyrum S. Aderson, Phil Roth. EMBER: An open dataset for

training static PE malware machine learning models, arXivLabs,

Cornell University 2018.

[9] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath.

Malware images: Visualization and automatic classification,

Proceedings of the 8th International Symposium on

Visualization for Cyber Security 2011.

[10] Linh V. K., Hung Ng. V., Anh Tr. Ng. Enhance Deep

Learning model for malware detection with a new image

representation method, Information Security Journal 2023.,

Vietnam.

Malware detection in PE files using deep learning with self-supervised learning techniques

12 JSLHU, Issue 20, March 2025

[11] Li Deng George E. Dahl, Jack W. Stokes and Dong Yu.

Large-scale malware classification using random projections and

neural network 2013. ICASSP.

[12] Moreira, C. C., Moreira, D. C., & de Sales Jr, C. D. S.

Improving ransomware detection based on portable executable

header using xception convolutional neural network, Computers

& Security 2023. 130, 103265.

[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to

prevent neural networks from overfitting J. Mach. Learn 2013.

Res. 15(1):1929–1958.

[14] Razvan Pascanu, Jack W. Stokes, Li Deng, Dong Yu, Mady

Marinescu, Anil Thomas. Malware Classification with Recurrent

Networks 2015. IEEE ICASSP.

[15] Ren, Z., Chen, G., & Lu, W. Malware visualization methods

based on deep convolution neural networks, Multimedia Tools

and Applications 2020. 79, 10975-10993.

[16] Sunoh Choi, Sungwook Jang, Youngsoo Kim, Jonghyun

Kim. Malware Detection using Malware Image and Deep

Learning. International Conference on Information and

Communication Technology Convergence 2017, Jeju, Korea

(South).

[17] Seonhee Seok, Howon Kim. Visualized Malware

Classification Based on Convolutional Network. Journal of The

Korea Institute of Information Security and Cryptology 2016.

[18] Setia Juli Irzal Ismail, Hafiz Pradana Gemilang, Budi

Rahardjo, Hendrawan. Self-Supervised Learning Implementation

for Malware Detection. International Conference on Wireless

and Telematics (ICWT) 2022.

[19] Tu Nguyen Minh, Hung Nguyen Viet, Anh Phan Viet, Loi

Cao Van, Nathan Shone. Detecting Malware Based on Dynamic

Analysis Techniques Using Deep Graph Learning. Lecture Notes

in Computer Science 2020, vol. 12466.

[20] VirusShare – free malware storage, https://virusshare.com/.

Accessed: 2023-05-01.

[21] Virustotal – free online malware scanner,

https://www.virustotal.com/. Accessed: 2023-04-30.

[22] Website Center for Internet Security CIS - A community-

driven nonprofit, responsible for the CIS Controls and CIS

Benchmarks, https://www.cisecurity.org/. Accessed: 2023-08-23

[23] Wenyi Huang, Jack W. Stokes, MtNet: A Multi-Task

Neural Network for Dynamic Malware Classification, DIMVA,

2016.

[24] Xiaofei Xing, Xiang Jin, Haroon Elahi, Hai Jiang, Guojun

Wang, A Malware Detection Approach Using Autoencoder in

Deep Learning, IEEE Access 2022. Vol. 10.

[25] Xin Li, Peixin Lu, Lianting Hu, XiaoGuang Wang, Long

Lu. A novel self-learning semi-supervised deep learning network

to detect fake news on social media. Multimedia Tools and

Applications 2022.

