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THÔNG TIN BÀI BÁO TÓM TẮT 

Trong những năm gần đây, đã có sự gia tăng đột biến về phần mềm độc hại mới do 

tin tặc tạo ra trên toàn cầu, đặt ra thách thức cho các phương pháp phát hiện truyền 

thống. Bài báo này khám phá việc sử dụng trí tuệ nhân tạo tiên tiến, cụ thể là Học 

sâu với Học tự giám sát, để xác định phần mềm độc hại trong các tệp thực thi. 

Nghiên cứu của chúng tôi tập trung vào việc so sánh hiệu quả của các kỹ thuật học 

sâu phổ biến như mô hình CNN và mô hình CNN tinh chỉnh, với các mô hình 

Autoencoder. Đóng góp chính của bài báo này nằm ở việc so sánh kết quả của các 

phương pháp tiếp cận khác nhau này để phát hiện phần mềm độc hại. 
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1. INTRODUCTION 

In recent times, with the development of artificial 

intelligence, the explosion in the number of malware 

strains, as well as their variations, is one of the challenges 

that cause certain difficulties for traditional malware 

detection methods in the field of Information Security. 

Therefore, automatic malware detection is essential. 

Malware detection based on deep learning is one of the 

methods that brings positive results and is suitable for 

current requirements.  

Today, deep learning has been applied in many fields, 

especially with good results in image recognition. Due to 

the many hidden layers between the input and output 

layers, deep learning models can extract features and 

classify data into defined classes. When a file is 

represented as an image, a trained deep learning model 

can determine or predict whether it is malware. 

Portable executable files (PEs) have an important role 

in information security as they are typically containers for 

malware and execute malicious behaviors. This type of 

file contains executing machine codes used to start 

programs and applications on the computer. It is an 

important part of the system and one of the main sources 

of malware deployment. 

There are many approaches to using Deep Learning to 

detect malicious code, such as using Recurrent networks 

[14], Neural Networks [6, 11, 24], and Convolutional 

Neural Networks [2, 4, 11, 16, 17]. According to research, 

this paper has found that the use of Convolutional Neural 

Networks to detect malicious code (with their image 

representation) yields the good results. Furthermore, some 

studies promote solving the problem of detecting malware 

in their image representation using unsupervised learning 

models. [7, 18, 25, 26] 

Within the scope of the article, this research focuses on 

self-supervised learning model for malware images 

detection problem. This paper compares and evaluates the 

experiment’s result with other learning methods, using 

models that have been studied. 

2. RELATED WORK 

2.1 Convolutional Neural Network 

There are many Deep Learning techniques for solving 

the malware detection problem. However, the studies [12, 

15, 17] proved that the Convolutional Neural Network 

yields the best results.  

A Convolutional neural network (CNN) is a deep 

learning architecture designed to process and analyse 

visual data, such as images and videos by automatically 

learning features between pixels [6]. The main 

components of CNN include convolutional layers, pooling 

layers, fully connected (dense) layers, activation 

functions, and an overfitting reduction method through 

dropout [13]. In particular, convolutional layers help 

detect and extract features and characteristics of images 

(edges, textures, patterns…), while pooling layers play the 

role of reducing the complexity of the computing process 

[4]. 

The approach using deep learning in malware detection 

has yielded many good results due to several 

advantageous features that CNNs offer: 

- Feature Extraction and Learning: CNNs are adept at 

automatically learning hierarchical representations of data 

and relevant features from raw data, eliminating the need 

for manual feature engineering. 

- Spatial Hierarchical Learning: CNNs can learn spatial 

hierarchies of features within the data, which is useful for 

detecting complex patterns in the structure and content of 

malware. 

- Scalability: CNNs can be scaled to handle large 

datasets, which is critical in the context of malware 

detection due to the vast number of malware samples that 

need to be processed.  

By leveraging these capabilities, researchers can 

develop robust and effective malware detection systems 

capable of identifying both known and unknown malware 

variants. The models proposed in [19] and [5] have 

structures and parameters shown in Table 1 and Table 2, 

respectively. Through experiments, this research found 

that in the model [19], executing one step requires 100ms, 

while model [5] requires approximately 900ms in each 

epoch. 

Most studies, such as [5, 9, 19], use networks with a 

structure of three interleaved convolutional layers and 

three pooling layers. Within the scope of this study, the 

paper will also apply and compare the two models of [5] 

and [19] on two datasets: EMBER dataset and a self-built 

dataset to obtain an overall objective view. 

2.2 Image Representation of Malware 

Representing malware as images is a technique used in 

some cases, especially when leveraging CNNs for 

malware detection. 

To implement CNNs in malware detection, it is 

necessary to represent malware as images. According to 

the proposal by L. Nataraj and colleagues [9], both benign 

and malware files are considered binary strings composed 

of 0s and 1s. Then, those strings can be read as a byte 

sequence (8 bits) arranged in a two-dimensional array and 

represented as a grayscale image where each pixel has a 

value ranging from 0 to 255. Variants of the same 

malware strain exhibit similar image representations 

regarding pixel pattern features, while different malware 

strains will have distinct images, differing from benign 

files (Figure 1).  

The challenge is to determine the optimal image 

representation method to preserve or enhance the 

distinctive characteristics of the image. Through 

observation, there are two main factors that lead to the 

loss of feature information: pixel arrangement order and 

the process of determining the size of the original image.  
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Figure 1. Grayscale Image Representation of Benigh (left) and 

Malware (Right). 

In most research articles on using CNNs in the problem 

of detecting malicious code, they often use the method of 

arranging pixels in a regular order. For example, L. 

Nataraj [9] and Minh Tu et al. [19] used the this method. 

The regular order for pixel arrangement is the allocation 

of pixels from left to right and top to bottom of the image. 

They established the thresholds depending on the byte 

sequence length to determine the width size of the image. 

The width size will be from 32, 64, 128, 256, 354, 512 and 

1024. Then, the height will be determined by dividing the 

sequence length by the width. Most of the time, the output 

images are usually rectangular in shape (the height is 

usually longer than the width). The images were then 

resized to 64x64 dimensions.  

In other studies for grayscale images, Quach Danh 

Ngoc [5] and Ren Z. [15] proposed new approaches that 

mitigate one limitation of [9, 19]. They used different 

methods of pixel arrangement such as Gray, Zigzag, H-

curve, Hilbert curve, Z-order, and Sweep curve. Only 

Hilbert and Zigzag methods keep the distance between 

any two consecutive points on the byte string placed next 

to each other in 2-D space. after the transformation into an 

image.  

This is general malware analysis and detection. 

Particularly with PE files, the characteristic information 

that helps distinguish malware from benign is mostly 

concentrated in the header, which is the beginning part of 

the file’s byte sequence. Thus, Moreina et al. [12] and [10] 

used a diagonal zigzag patterns to detect ransomware 

while transforming PE header data into images. 

Therefore, with the zigzag order of pixel arrangement 

method, the header information of the PE file will be 

extended horizontally within some top rows of the image. 

And the Hilbert curve method has difficulty converting to 

custom sized images. Furthermore, with the rectangle size 

determining process, the operation of resizing the image to 

64x64 (square) size will increase the risk of information 

distortion.  

 

Figure 2. Image representation patterns regular (a), zigzag (b), 

z-order (c), hilbert-curve (d) and serpentine (e). 

Through studying the above research, this study chose 

the zigzag pixel arrangement method based on the image’s 

diagonal called “serpentine” order for experiments. This 

method gave good results, in particular, diagonal zigzag 

patterns are suitable for PE files as well as preserving the 

continuity between pixels.  

2.3 Self-supervised learning technique 

There is a study [17] using self-supervised learning for 

malware detection with a natural language processing 

approach, which gave better results than supervised 

learning. On the other hand, there are research [3, 7] using 

Self-Supervised Learning for anomaly detection which 

also gave better results than supervised learning 

technique. Therefore, this paper proposes an approach of 

using Self-Supervised Learning technique to serve 

malware detection problem. 

In AI field, Self-Supervised Learning (SSL) is a 

paradigm where a model is trained on a task and, instead 

of depending on external labels provided by humans, uses 

the data itself to generate supervisory signals. Self-

supervised learning in neural networks seeks to generate 

meaningful training signals by taking advantage of innate 

structures or relationships in the input data. The way SSL 

tasks are made, completing them necessitates identifying 

key characteristics or connections in the data. Usually, the 

input data is enhanced or changed in a way that produces 

related sample pairs. The supervisory signal is created 

using one sample as the input and the other as the output. 

Noise addition, cropping, rotation, and other adjustments 

are examples of this augmentation. Self-supervised 

learning more closely resembles how humans classify 

objects in the real world. 

An artificial neural network or another model, like a 

decision list, is the foundation of the conventional SSL 

technique. There are two steps in the learning process for 

the model. Initially, the task is completed by applying 

pseudo-labels to help initialize the model parameters, 

based on an auxiliary or pretext classification task. 

Second, either supervised or unsupervised learning is used 

to complete the task at hand. Completing patterns from 

masked input patterns is the focus of other auxiliary tasks. 

In computer vision and natural language processing 

(NLP), where the quantity of labeled data needed to train 

models can be unreasonably large, self-supervised 
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learning is especially helpful. Self-supervised model 

training is more economical and time-efficient because it 

requires fewer annotations and labels on the data. 

 Therefore, in the scope of this study, with the SSL 

idea, the image representation of malware and benign files 

will be augmented to leverage inherent structures and 

relationships within the input data to create meaningful 

training signals. 

3. PROPASAL FOR PE FORMAT MALWARE 

DETECTION USING AUTOENCODER 

As mentioned in the previous section, this study 

proposes an approach to use Self-Supervised Learning 

models for malware detecting with image representation. 

First, the input files will be converted into grayscale 

images with serpentine pixel arrangement methods. After 

that, those original images will be augmented 

transforming (flipping, rotating, jigsaw puzzling). Then, 

the augmented images are going into an Autoencoder to 

be reconstructed into original image. Thus, this process 

helps getting the core patterns aka the most distinctive 

features to classify if they are malware or benign. 

Autoencoder belongs to unsupervised deep learning 

network group. It gains knowledge of effective data 

representation or encoding. Since it is a directed neural 

network that is less dependent on training data and is 

capable of producing its own labeled data, it is 

unsupervised deep learning - more precisely, self-

supervised deep learning. The purpose of Autoencoder is 

to try to reproduce the input data as closely as possible. 

Autoencoder is often used in data dimensionality 

reduction problems, image noise removal or anomaly 

detection. So, this article focuses on the problem of 

malware detection. 

An Autoencoder network can be divided into three 

main components: encoder f(x), code (also known as 

“bottleneck”) h and decoder g(h). The bottleneck or code 

layer is the representative layer, usually the smallest size 

in the network, the main function of this layer is to store 

the most important information from the input data. 

Meanwhile, the encoder layer tries to put the input data 

into the code layer, and the decoder layer tries to recreate 

the output data from the code layer. If we consider x as the 

input data and r as the data reproduced from the decoder 

layer, we can understand: h = f(x) and r = g(h). 

Autoencoder is essentially a neural network, so it can be 

trained through back-propagation with an error function. 

 

Figure 3. Basic structure of Autoencoder. 

The encoder consists of a series of convolutional 

blocks, pooling modules, and a bottleneck, which is a 

compact area where the model's input is compressed. The 

decoder, which consists of several upsampling modules to 

reconstruct the compressed feature as an image, comes 

after the bottleneck. When using a basic autoencoder, the 

desired result should be the same as the input data but 

with less noise. On the other hand, variational 

autoencoders create an entirely new image using the input 

data that the model has been given. 

The bottleneck is the smallest and most crucial 

component of the neural network. The purpose of the 

bottleneck is to limit the amount of data that can pass from 

the encoder to the decoder, allowing only the most 

essential information to do so. We can say that the 

bottleneck aids in the formation of a knowledge-

representation of the input since it is constructed in a way 

that captures the maximum amount of information 

contained in an image. As a result, the encoder-decoder 

structure aids in obtaining the maximum amount of data 

from an image and creates valuable associations between 

different network inputs. The neural network is further 

prevented from memorizing the input and overfitting on 

the data by a bottleneck acting as a compressed 

representation of the input. The smaller the bottleneck, the 

lower the risk of overfitting, but very small bottlenecks 

would limit the amount of data that could be stored, which 

raises the possibility that crucial data could escape the 

encoder's pooling layers. 

Eventually, the output of the bottleneck is reconstructed 

by a series of convolutional and upsampling blocks that 

make up the decoder. The decoder functions as a 

"decompressor," reconstructing the image from its latent 

attributes, since the input is a compressed knowledge 

representation. 

 

Figure 4. Deep Autoencoder structure: Encoder, Bottleneck 

(code), Decoder. 

To reproduce the input data as closely as possible to the 

training data is the aim of the autoencoder. With this 

knowledge, we can provide Autoencoder with only data of 

the benign class - not malicious code - for it to learn. 

Next, we determine the reconstruction error for both 

malware and benign components of the dataset. 

Reconstruction error indicates whether the Autoencoder's 

reconstruction of the benign set is accurate or not. A 

smaller reconstruction error indicates a higher 

reconstruction error. This indicates that the input data is 

malicious software rather than benign data. The 

reconstruction error now resembles a histogram; all we 

need to do is determine a threshold to distinguish between 

the malicious and benign error sets. This turns the issue 

into a binary classification issue. 

 

 

 



Malware detection in PE files using deep learning with self-supervised learning techniques 

 

10 JSLHU, Issue 20, March 2025 

 

4. EXPERIMENTS AND EVALUATION 

4.1 Dataset Description 

This study uses 2 datasets, one is EMBER [8] (with 

data from 2017), and the other is self-built called LQDU-

23 (with data from 2023). The EMBER dataset contains 

total 1,100,000 samples with the distribution shown in 

figure 5 below: 

 

Figure 5. Distribution of samples in EMBER dataset. 

The EMBER dataset [8], collected in 2017, has many 

types and has been balanced in terms of the number of 

files of each type. Types of malicious code in EMBER 

include: adware, backdoor, mining, flooder, packed, 

ransomware, riskware, rootkit, spyware, common trojan, 

virus, worm, etc. Ensure the number of files for each is 

about 40,000 files. 

On the other hand, this study builds a dataset called 

LQDU-23, and benign files are collected, all of which are 

files with the PE format or with PE file extensions 

belonging to the PE group. Malware files are collected 

from the VirusShare [20] channel, which came from the 

VirusShare_00468.zip set, with a total size of 52.63 GB 

and containing 27533 malware files in PE format. They 

were uploaded on April 30, 2023. These samples are then 

uploaded to VirusTotal [21] to scan and retrieve the 

results to classify malware, as well as serve as a basis for 

separating the training and testing sets. After that, training 

and test sets are built with 2000 samples of benign and 

2000 samples of malware in each set. 

In the LQDU-23 dataset, the number of strains 

collected is not much, with most focusing on trojan strains 

(including droppers, downloaders, ransomware, and 

proxies); a few are viruses and worms; this is also 

reflected in the report. Actual reports in CIS [23]: 

Table 1. Distribution of malware families in LQDU-23 

Type Quantity 

Trojan 16193 

Virus 1177 

Worm 343 

Others 273 

Our approach is to experimentally apply the methods to 

a multi-species, symmetric, balanced (EMBER) data set 

and then use the same training results to test on another  

dataset , which is unbalanced in terms of type (LQDU-23) 

to test the performance quality of the methods against 

each other: specifically, the ability to extract features 

hidden within the structure of the malicious code. 

Especially in real-life situations, the type of malware used 

tends to change depending on the characteristics of the 

technological situation, the security capabilities of 

software developersand the level of security awareness of  

users’ networks. 

Since this paper uses 4 different methods to transform 

the original images to become the input for Autoencoder, 

the data size will be increased by 4 times.  Thus, in the 

scope of this study, 2000 samples were randomly chosen 

from each subset with a fixed seed parameter. 

After obtaining the dataset for training and testing, this 

study proceeds to convert them into grayscale images 

according to the method of L. Nataraj et al. [9]: consider 

the data bytes as a pixel, arrange them into photos in order 

from top to bottom, left to right. Then resize the image to 

64x64 to fit the input of a neural network. 

From here, create two copies of the above image 

dataset. A set will be labeled as malicious or benign. This 

dataset is ready for two methods. CNN [18] and fine-

tuned CNN [5]. The remaining unlabeled copy of the 

dataset will be augmented into 4 versions: rotated 90 

degrees, rotated 270 degrees, flipped horizontally, and 

flipped vertically, as shown in Figure 6: 

 

Figure 6. Augmented Images: (a) original, (b) rotate 90 degree, 

(c) rotate 270 degree, (d) flip-horizontal, (e) flip-vertical 

4.2 Experimental results & evaluation 

The experiment program is built in Python 3 language 

with the Keras library, running on a computer with the 

following configuration:  

- Intel Core i7-6700HQ CPU @2.60GHz,  

- RAM: 12GB RAM, 

- NVIDIA GeForce GTX 960M graphics card.  

The experiment uses 3 learning models: two CNNs 

from [5, 19] and SSL with Autoencoder to train with 

EMBER dataset. After that, the trained models are tested 

on both the EMBER and LQDU-23 datasets. 

Due to the equal number of malware and benign in the 

training dataset, the “accuracy” measurement is used. In 
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addition, this study also uses “recall” and “f-score” 

measurements. 

For the CNN method, training and generating results 

follow the model outlined in [5, 19]. Particularly with the 

Autoencoder method, this study uses the trained encoder 

from the autoencoder to compress input data and train a 

different predictive model. After that, a logistic regression 

model is processed to train on the training dataset directly 

and evaluate the performance of the model on the holdout 

test set, as shown in Figure 7. 

 

Figure 7. Using Autoencoder for classification 

The experimental results, with the EMBER dataset, the 

difference of all three models is not too different, while 

with the LQDU-23 dataset, Autoencoder method still 

maintains high accuracy while the other two models 

decrease sharply as shown in Table 2. 

Table 2. Experiment Results 

Dataset 

Approach 

EMBER LQDU-23 

Acc Recall F1 Acc Recall F1 

CNN [19] 92.06 92.06 93.94 83.03 83.03 90.73 

CNN [5] 96.33 96.33 97.95 92.22 92.22 95.95 

Autoencoder 96.31 96.31 97.57 94.73 94.73 97.09 

This shows that with Autoencoder, underlying features 

are extracted and are more effective in detecting different 

variations of malicious code. From there, it can be used to 

detect malicious code in new data sets, shorten update 

times, and retrain the classifier. According to experimental 

results, this method shows high development potential, 

meeting the requirements in today's malware situation. 

The results of our study suggest that when it comes to 

spotting different types of malware, not all methods are 

equal. This study trained three models - CNN, fine-tuned 

CNN, and Autoencoder using the EMBER dataset, which 

is a solid collection of malware from 2017. As above, all 

three models did pretty well on this dataset. 

However, when this research tested these models on the 

LQDU-23 dataset, which has newer malware up until 

2023, the Autoencoder model stood out. It kept its high 

accuracy, unlike the CNN and fine-tuned CNN models, 

which struggled more with the new kinds of malware. 

This tells us that the Autoencoder method is good at 

picking up on the hidden, underlying features of malware. 

It's better at recognizing new types of malicious code. 

This could mean faster updates for security systems and 

easier retraining of detection tools. 

5. CONCLUSION 

In summary, the primary contribution of this paper is 

the comparison of three distinct Deep Learning methods: 

CNN, fine-tuned CNN, and Autoencoder for malware 

detection in executable files. This article tested these 

techniques on LQDU-23, a more recent dataset, as well as 

EMBER, a reliable dataset with older malware. Our 

experiment shows that the Autoencoder model was the 

most effective at identifying novel and evolving malware 

types. Even with the most recent threats from up to 2023, 

it remained accurate. This implies that the Autoencoder 

technique is potential for enhancing the training process of 

detection tools and shorten security system updates time 

and resources. The Autoencoder’s adaptability is primarily 

due to its capacity to extract underlying patterns from 

malware images. The self-supervised learning model can 

offer a promising approach to detect and classify malware 

generated by AI. This work adds knowledge to the 

discussion of self-supervised learning applications in 

practical problem solving, especially malware detection. 
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